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Abstract. This paper concerns about the possibility of identifying the active set in a noninterior
continuation method for solving the standard linear complementarity problem based on the algorithm
and theory presented by Burke and Xu (J. Optim. Theory Appl. 112 (2002) 53). It is shown that under
the assumptions of P-matrix and nondegeneracy, the algorithm requires at most O (ρ log (β0µ0/τ))
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1. Introduction

Let M ∈ Rn×n be a given matrix and q ∈ Rn be a given vector. The standard linear
complementarity problem, which is denoted by LCP(M,q), is to find a vector
(x, y) ∈ R2n such that{

Mx + q − y = 0,
xT y = 0, x � 0, y � 0.

(1.1)

Various well-known methods have been proposed to solve LCP(M,q), see the
book by Cottle, Pang and Stone [14] and the survey by Ferris and Kanzow [19].
Among them, smoothing (Newton) methods have received an increasing interest
in the literature for solving complementarity and variational inequality problems,
see e.g., [1–13,18,21–24,26–27,30–34,36–39], the survey [35] and the numerical
report [40] for the details

The main feature of smoothing methods is to construct a smooth approximation
to a nonsmooth equation reformulation of the concerned problem, and then use
the Newton method to solve the smoothing equation. These methods have global
convergence and locally superlinear/quadratic convergence under certain condi-
tions. However, a general smoothing method for solving (1.1) does not possess
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a finite convergence property since the smoothing equation is always nonlinear.
Usually, the convergence behavior of an algorithm is closely related to the correct
identification of the optimal active constraints. For example, in the field of interior
point methods, the identification technique, after finitely many iterations, allows us
to recover an exact solution easily from the approximate one which is provided by
an interior point method. Such an identification property improves the efficiency
of interior point methods and column generation techniques. For the related dis-
cussion, see, e.g. [15–17,25] and the references therein. In this sense, the study of
the identification property is an interesting topic in the field of smoothing methods.
This paper will focus on such an identification property and its complexity bounds
for a noninterior continuation method which is viewed as a special smoothing
method.

Complexity of the smoothing methods for finding an ε-approximate solution to
problem (1.1) has been studied by Hotta et al. [24] and Burke and Xu [3]. In [24],
the authors obtain a complexity bound under the assumption of monotonicity. In
[3], the authors show the complexity bound under the assumption of P-matrix.

Motivated by the algorithm and theory of Burke and Xu [3], we first give a
minor modification of their algorithm in Section 2 of this paper. We then show in
Section 3 that, under the assumptions of P-matrix and nondegeneracy, the modified
algorithm can identify the optimal active set if the starting point is in a small and
narrow neighborhood of the central path. By using this result, we finally show
in Section 4 that the modified algorithm with arbitrary starting point finds the
optimal active set by at most O (ρ log (β0µ0/τ)) iterations, where β0 is the width
of the neighborhood which depends on the initial point, µ0 is the initial smoothing
parameter, ρ is a positive number which depends on the problem and the initial
point, and τ is a small positive number which depends only on the problem. Once
the optimal face is identified, the exact solution of problem (1.1) can be obtained
immediately by solving a linear system.

The following notation will be used throughout the paper. Rn+ and Rn++ de-
note the nonnegative and positive orthants of Rn, respectively. ‖ · ‖ represents
2-norm, while other norms will be expressed with appropriate subscripts. In ad-
dition, vec{xi} = x. All vectors are column vectors. For simplicity, we sometimes
use (x, y) for the column vector (xT , yT )T . Matrix E represents the identity matrix
with suitable dimension. Given matrix W ∈ Rn×n, and J,K ⊆ I := {1, 2, · · · , n},
we denote by WJK the |J | × |K| submatrix of W consisting of entries wjk, j ∈
J, k ∈ K.



N. XIU AND J. ZHANG 185

2. A modified algorithm

The algorithm proposed in this paper is based on the use of the Chen-Harker-
Kanzow-Smale (CHKS) smoothing function

p(u,µ) = u+
√
u2 + 4µ2

2
,

where µ > 0 is called the smoothing parameter. Chen and Harker [6] used this
function to construct the first noninterior continuation method for the LCP. Several
properties of this function have been observed by Burke and Xu [2], Hotta and
Yoshise [23], Kanzow [26], Qi and Sun [33–35], etc.

LEMMA 2.1. Let p(u,µ) be the CHKS smoothing function. Then p(u,µ) is twice
continuously differentiable on R × R++. Moreover,
(i) 0 < p′

1(u, µ) < 1, p′
1(−u,µ) = 1 − p′

1(u, µ), ∀u ∈ R,µ > 0;
(ii) 0 < p′

2(u, µ) � min{1, 2µ/|u|}, ∀u ∈ R, µ > 0;
(iii) 0 < p′′

ii(u, µ) � min{1/|u|, 1/µ}, ∀u ∈ R, µ > 0, i=1,2;
(iv) 0 < p(u,µ)− p(u, 0) � 2µ2/|u|, ∀u ∈ R, µ > 0.

Let (·)+ denote the componentwise maximum, then the problem (1.1) is reformu-
lated as

F(w) :=
[
Mx + q − y

x − (x − y)+

]
= 0, (2.1)

where w = (x, y) ∈ R2n. This is a system of nonsmooth equations. By using the
CHKS smoothing function, we can construct a smooth approximation to (2.1):

H(w,µ) :=
[
Mx + q − y

%(w,µ)

]
= 0, (2.2)

where µ > 0, %(w,µ) = (φ(x1, y1, µ), · · · , φ(xn, yn, µ))T , and

φ(r, s, µ) = r − p(r − s, µ), ∀(r, s) ∈ R2.

It is easy to check that the Jacobian matrix ofH with respect tow has the following
form:

∇wH(w,µ) =
[

M −E
∇x%(w,µ) ∇y%(w,µ)

]
,

where

∇x%(w,µ)=diag{1−p′
1(xi−yi, µ)}=

1

2
diag

{
1− xi − yi√

(xi − yi)2 + 4µ2

}
,
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and

∇y%(w,µ) = diag{p′
1(xi − yi, µ)} = 1

2
diag

{
1 + xi − yi√

(xi − yi)
2 + 4µ2

}
.

We now describe our algorithm in which we use a concept of neighborhood of
the central path that was introduced by Burke and Xu [1], i.e.,

N (β, µ) := {w = (x, y) ∈ R2n | Mx + q = y, ‖%(w,µ)‖∞ � βµ},
where parameter β > 0 is called the width of the neighborhood. For a suitable
initial point (w0, µ0) ∈ R2n × R++, we take β0 � ‖%0‖∞/µ0 where %0 =
%(w0, µ0). If β0 � β∗ (a small positive number, see Remark 1 below), then
let β = β0 and we directly use Burke-Xu’s algorithmic framework to produce
an iterative sequence {wk,µk}. If β0 > β∗, then we apply the damped Newton
method to equation H(w,µ0) = 0 to produce an iterative sequence {w0,l} until
‖%0,l‖∞/µ0 � β∗ is satisfied, and let β be a positive number less than β∗. The
details of the modified algorithm are stated as follows. For simplicity, at the kth
iteration we use Hk = H(wk,µk),%

k = %(wk,µk),∇wH
k = ∇wH(w

k, µk),
H 0,l = H(w0,l, µ0),%

0,l = %(w0,l, µ0), etc.
Algorithm: Given constant σ ∈ (0, 1/2].
Step 0. (Preliminary)
Take x0 ∈ Rn,µ0 > 0 and y0 = Mx0 + q. Let β0 � max{1, ‖%0‖∞/µ0}.

S0.1. Let l := 0, x0,l := x0, y0,l := y0.
S0.2. If ‖%0,l‖∞/µ0 � β∗ (see Remark 1 below), then set x0 :=
x0,l , y0 := y0,l , and β := (1 −σ )β∗ if ‖%0,l‖∞/µ0 < (1 −σ )β∗,
and β := ‖%0,l‖∞/µ0 otherwise. Set k := 0, and go to Step 1.
S0.3. Set w0,l+1 = w0,l + θ0,l�w0,l, where �w0,l = (�x0,l ,

�y0,l ) satisfies the linear system

∇wH(w
0,l, µ0)�w = −H(w0,l, µ0), (2.3)

and θ0,l is the maximum in the set {1, 1/2, 1/4, · · · } such that

‖%(w0,l+1, µ0)‖∞ � (1 − σθ0,l)‖%(w0,l, µ0)‖∞. (2.4)

S0.4. Let l := l + 1 and go to Step S0.2.
Step 1. If ‖%k‖∞ = 0 then stop; otherwise go to the next step.
Step 2. (The Search Direction)
Compute the Newton direction �wk = (�xk,�yk) by solving the linear
system

∇wH(w
k, µk)�w = −Hk. (2.5)

Step 3. (The New Iterative Point)
Setwk+1 = wk+θk�wk, where θk is the maximum in the set {1, 1/2, 1/4, · · · }
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such that

‖%(wk+1, µk)‖∞ � (1 − σθk)‖%(wk,µk)‖∞. (2.6)

Step 4. (Update for µk)

µk+1 =
(

1 − 1

2
βσθk

)
µk. (2.7)

Step 5. Set k := k + 1, and go to Step 1.

REMARKS
(1) In the algorithm, the choice of the starting point (w0, µ0) is quite easy and

arbitrary. Steps S0.1-S0.4 are called preliminary iterations or Phase (I). They
are added to ensure that the width of the neighborhood is very small, i.e.,
w0 ∈ N (β, µ0) and

(1 − σ )β∗ � β � β∗, β∗ := L

2(1 + L)
< 1, (2.8)

where L is the fundamental quantity associated with P-matrix (see Section 3
for details). We will see from the analysis below that β∗ can be replaced by
one of its lower bounds.

(2) From Kanzow [26], the Newton equations (2.3) and (2.5) are both solvable
under the assumption that M is a P0-matrix.

(3) By applying the same proof techniques used in Burke and Xu [1–3], we can
show that the backtracking line search procedure for evaluating θk in Step 3
(θ0,l in Step S0.3) is finitely terminating, and that µk+1 is well-defined and
wk+1 ∈ N (β, µk+1).

The above remarks imply that the modified algorithm is implementable. If it pro-
duces an infinite sequence {wk,µk}, we can derive the following global linear
convergence theorem, whose proof is similar to the one in Burke and [1] or Chen
and [8], and hence is omitted.

THEOREM 2.1. Suppose that M is a P-matrix and (x∗, y∗) is the unique solution
to problem (1.1). Let {wk,µk} be an infinite sequence generated by the modified
algorithm, then
(a) the sequence {µk} converges Q-linearly to zero;
(b) the sequence {(xk, yk)} converges R-linearly to the unique solution (x∗, y∗).
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3. Identification of the optimal active set

For w ∈ R2n, we define the index sets

A(w) = {i ∈ I | xi − yi < 0},
B(w) = {i ∈ I | xi − yi > 0},
C(w) = {i ∈ I | xi − yi = 0},

where I is given at the end of Section 1. Obviously, when the solution (x∗, y∗) to
problem (1.1) is strictly complementary, A(w∗)∪B(w∗) = I (or C(w∗) = ∅), and
A(w∗) is the optimal active set defined by {i ∈ I | x∗

i = 0}. In this section we are to
show that if a starting point w0 ∈ R2n is given in a small and narrow neighborhood
of the central path, then the optimal active set can be identified by an index set at
wk for each k. For this purpose, we make use of the following assumptions.

ASSUMPTION (A) M is a P-matrix.

ASSUMPTION (B) The solution (x∗, y∗) is nondegenerate or strictly comple-
mentary.

A matrix M ∈ Rn×n is said to be a P-matrix if for any nonzero vector x ∈ Rn,
∃i ∈ I : xi(Mx)i > 0. It is known that if M is a P-matrix, then problem (1.1) has
a unique solution, say (x∗, y∗). In [29], Mathias and Pang proved that, if M is a
P-matrix, then there is a constant α(M) := min‖x‖∞=1{maxi xi(Mx)i} > 0 such
that

max
i

xi(Mx)i � α(M)‖x‖2
∞, ∀x ∈ Rn, (3.1)

and

‖M‖∞ � α(M), α(M)α(M−1) � 1. (3.2)

Furthermore, [28] gave a lower bound estimate for α(M).
Let PJ (M) be the principal pivotal transform of M with respect to the index

sets J ⊆ I and J̄ := I\J defined by

PJ (M) :=
[

M−1
JJ −M−1

JJ MJ J̄

MJ̄JM
−1
JJ MJ̄ J̄ −MJ̄JM

−1
JJ MJ J̄

]
.

Burke and Xu [3] introduced another fundamental quantity associated with a P-
matrix M

L := min{α(PJ (M)) | ∀J ⊆ I }, (3.3)

which is a finite number and in the interval (0, α(M)). Furthermore, they gave
a lower bound estimate of such a quantity, see [39] and Theorem 5.3 in [3]. By
using the value L, they obtained the following important result in the analysis of
complexity.
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LEMMA 3.1. (3, Lemma 4.4). Suppose that Assumption (A) holds. Let f (w,µ)
be a continuous function from R2n × R++ to Rn. Then for any given w ∈ R2n and
µ > 0, the linear equation

∇wH(w,µ)

[
d1

d2

]
=
[

0
f (w,µ)

]
(3.4)

is solvable, and the solution (d1, d2) possesses the following bound:

‖(d1, d2)‖∞ �
(

1 + 1

L

)
‖f (w,µ)‖∞. (3.5)

We now consider the condition number of problem (1.1)

σLCP := min
i

|x∗
i − y∗

i |, (3.6)

which is well-defined, finite and positive when Assumptions (A) and (B) are satis-
fied. It is the same as the first condition number defined by Illés, Peng et al. [25].
Thus by Lemma 3.2 in [3], there is a cheap way to get a lower bound for σLCP if
the problem data (M,q) are integer.

LEMMA 3.2. If M and q are integral, then σLCP � 1
π(M)

, where π(M) :=∏n
j=1 ‖M.j‖ and M.j denotes the j th column of M. That is, σLCP can be bounded

by an expression which is formed by the input data.

Consequently, we obtain a lemma that plays a key role in deriving the desired
result.

LEMMA 3.3. Suppose that Assumptions (A) and (B) hold. If a point w0 ∈ R2n

and a smoothing parameter µ0 > 0 satisfy

β ∈ (0, β∗], β∗ = L

2(1 + L)
, (3.7a)



w0 ∈ N (β, µ0), (3.7b)

µ0 � 1

2
σβ · min

i
|x0
i − y0

i |, (3.7c)

then A(w0) = A(w∗) and B(w0) = B(w∗).
Proof. For every µ ∈ (0, µ0], consider the nonlinear system

H(w,µ)−
[

0
µ
µ0
%(w0, µ0)

]
= 0, w ∈ R2n. (3.8)

Since M is a P-matrix, the system (3.8) for every µ ∈ (0, µ0] has a unique solu-
tion, say w(µ) = (x(µ), y(µ)). By the implicit function theorem, w(µ) forms a
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continuously differentiable path on (0, µ0] with w(µ0) = w0. Using an argument
similar to Theorem 2.1, this path can be extended continuously to µ = 0 by
setting w(0) = w∗. It is not difficult to verify by (3.8) that as w0 ∈ N (β, µ0),
w(µ) ∈ N (β, µ) for all µ ∈ [0, µ0]. Also, we can prove that for each µ ∈ (0, µ0),

µ <
1

2
σβ · min

i
|x(µ)i − y(µ)i |. (3.9)

In fact, by the mean value and implicit function theorems we have for µ = (1 −
σλ)µ0 with λ ∈ (0, 1/σ ),

w(µ) = w(µ0)+ (µ− µ0)d = w0 − σλµ0d,

where d = (d1, d2) is defined by

d := −(∇wH(w̄, µ̄))
−1

[
0

∇µ%(w̄, µ̄)− 1
µ0
%(w0, µ0)

]
(3.10)

with µ̄ = (µ̄1, µ̄2, · · · , µ̄n)T ∈ Rn, µ̄j ∈ (µ,µ0) for every j , and w̄ = w(µ̄) ∈
R2n (Note that in vectors x(µ) and y(µ), only one is independent since y(µ) =
Mx(µ) + q). Then

x(µ) − y(µ) = (x0 − y0)− σλµ0(d
1 − d2),

which implies that

min
i

|x0
i − y0

i | � min
i

|x(µ)i − y(µ)i | + σλµ0‖d1 − d2‖∞. (3.11)

By part (ii) of Lemma 2.1, we have

‖∇µ%(w̄, µ̄)− 1

µ0
%(w0, µ0)‖∞ � 1 + ‖%(w0, µ0)‖∞

µ0
� 1 + β < 2.

(3.12)

Thus, from (3.7c), (3.11), Lemma 3.1, (3.12) and (2.8) we know that

µ0 � 1
2σβ mini |x0

i − y0
i |

� 1
2σβ[mini |x(µ)i − y(µ)i | + σλµ0‖d1 − d2‖∞]

� 1
2σβ[mini |x(µ)i − y(µ)i | + σλµ0

2(1 + L)
L ‖∇µ%(w̄, µ̄)

− 1
µ0
%(w0, µ0)‖∞]

< 1
2σβ

[
mini |x(µ)i − y(µ)i | + σλµ0

4(1 + L)
L

]
� 1

2σβ mini |x(µ)i − y(µ)i | + σ 2λµ0.
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This inequality, together with the facts µ = (1 − σλ)µ0 and σ ∈ (0, 1
2 ], yield that

for λ ∈ (0, 1
σ
),

µ = (1 − σλ)µ0 <
1−σλ
1−σ 2λ

1
2σβ · mini |x(µ)i − y(µ)i |

< 1
2σβ · mini |x(µ)i − y(µ)i |.

That is, (3.9) holds.
From (3.9) and (3.7c) we know that for all i and allµ ∈ (0, µ0], x(µ)i−y(µ)i �=

0. Hence continuity of w(µ) on [0, µ0] and Assumption (B) imply that for each i,
the sign of x(µ)i − y(µ)i is constant and the conclusion is proved. �

We observe that conditions (3.7a)–(3.7c) are independent of any algorithm.
They actually show that, for any point belonging to a narrow neighborhood ((3.7a)
and (3.7b)) and being not “too distant” from the solution ((3.7c)), one is able to
identify correctly the sets A(w∗) and B(w∗). In view of this lemma, we derive the
main result of this section.

THEOREM 3.1. (Identification of the Optimal Active Set). Suppose that Assump-
tions (A) and (B) hold. If we choose the initial point w0 ∈ R2n and the initial
smoothing parameter µ0 > 0 such that condition (3.7) is satisfied, and if {(wk, µk)}
is a sequence produced by the modified algorithm, then for any index k, A(wk) =
A(w∗) and B(wk) = B(w∗).

Proof. We prove this theorem by induction. Assume for some index k,

β ∈ (0, β∗], β∗ = L

2(1 + L)
, (3.13a)



wk ∈ N (β, µk), (3.13b)

µk � 1

2
σβ · min

i
|xki − yki |, (3.13c)

By Lemma 3.3, it suffices to prove that they also hold for k + 1.
It is easy to observe that wk+1 ∈ N (β, µk+1) by (3.13b) and Remark 3. From

xk+1 − yk+1 = (xk − yk)+ θk(�xk − �yk),
we have for every i ∈ I ,

|xki − yki | � |xk+1
i − yk+1

i | + θk · ‖�xk − �yk‖∞

� |xk+1
i − yk+1

i | + θk
2(1 + L)

L ‖%k‖∞ (by Lemma 3.1)

� |xk+1
i − yk+1

i | + θkµk. (by ‖%k‖∞ � β∗µk)

Hence,

min
i

|xki − yki | � min
i

|xk+1
i − yk+1

i | + θkµk.
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This together with (3.13c) imply that

µk � 1
2σβ · min

i
|xki − yki |

� 1
2σβ

[
min
i

|xk+1
i − yk+1

i |
]

+ 1
2σβθkµk.

Therefore,

µk+1 =
(

1 − 1

2
σβθk

)
µk � 1

2
σβ min

i
|xk+1
i − yk+1

i |.
This completes the proof. �

4. Complexity of finding the optimal active set

We know from Step 0 of the algorithm in Section 2 that, the choice of the starting
point is very arbitrary. Generally speaking, such a starting point does not always
satisfy condition (3.7). One problem is whether the modified algorithm is able to
produce an iterative point satisfying (3.7). If “Yes”, can the required number of
iterations be estimated? In this section, we shall answer these two questions. To
start, we recall a result about error bound by Mathias and Pang [29].

LEMMA 4.1. (29, Lemma 2). Let Assumption (A) hold and γ = α(M), then for
any x ∈ Rn and y = Mx + q,

‖x − x∗‖∞ � (1 + ‖M‖∞)
γ

‖x − (x − y)+‖∞.

By using this lemma, we derive an error bound at point wk by a linear function of
µk and ‖%k‖∞.

LEMMA 4.2. Under Assumption (A), we have, for any index k,

‖(xk − yk)− (x∗ − y∗)‖∞ � (1 + ‖M‖∞)2

γ
(‖%k‖∞ + µk).

Proof. For any index k, from yk = Mxk +q, Lemma 4.1 and part (ii) of Lemma
2.1, we obtain

‖(xk − yk)− (x∗ − y∗)‖∞
� (1 + ‖M‖∞)‖xk − x∗‖∞

� (1 + ‖M‖∞)2

γ ‖xk − (xk − yk)+‖∞

� (1 + ‖M‖∞)2

γ (‖%k‖∞ + ‖vec{(xki − yki )+ − p(xki − yki , µk)}‖∞)

� (1 + ‖M‖∞)2

γ (‖%k‖∞ + µk).
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This completes the proof. �
From the above lemma and Assumption (B), we are able to obtain the following
key lemma in our analysis on the complexity issue.

LEMMA 4.3. Let Assumptions (A) and (B) hold. Then there is an integer K1

satisfying

µK1 <
1

2
σβ min

i
|xK1
i − y

K1
i |, (4.1)

whenever

µK1 � σ

16

L

(1 + ‖M‖∞)2σLCP . (4.2)

Proof. By µk ↓ 0, L > 0 and σLCP > 0, there is an integer K1 such that (4.2)
is satisfied. From Lemma 4.2, ‖%k‖∞ � βµk , (4.2), β � β∗ < 1, L � γ and
σ ∈ (0, 1

2 ], we obtain

‖(xK1 − yK1)− (x∗ − y∗)‖∞ � (1 + ‖M‖∞)2

γ (‖%K1‖∞ + µK1)

� (1 + ‖M‖∞)2

γ (1 + β)µK1

< 1
8σLCP ,

from which it is implied that

σLCP = mini |x∗
i − y∗

i |
� mini |xK1

i − y
K1
i | + ‖(xK1 − yK1)− (x∗ − y∗)‖∞

< mini |xK1
i − y

K1
i | + 1

8σLCP .

This yields that

σLCP <
8

7
min
i

|xK1
i − y

K1
i |. (4.3)

Thus, from (4.2), (4.3), L � ‖M‖∞ and σ ∈ (0, 1
2 ], we know that

µK1 < σ
16

L
(1 + ‖M‖∞)2

8
7 mini |xK1

i − y
K1
i |

= 1
2σβ mini |xK1

i − y
K1
i | L

7β(1 + ‖M‖∞)2

< 1
2σβ mini |xK1

i − y
K1
i |.

The proof is completed. �
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In view of (4.1) and wK1 ∈ N (β, µK1), the K1th iterative point wK1 and the
smoothing parameter µK1 satisfy condition (3.7). Hence, Theorem 3.1 implies that
A(wk) = A(w∗) and B(wk) = B(w∗) for all k � K1, and hence the active set
at wK1 coincides with the optimal active set. Thus, one can get the exact solution
w∗ = (x∗, y∗) with x∗ = (0, x∗

B(wK1 )
) and y∗ = (y∗

A(wK1 )
, 0), where x∗

B(wK1 )
and

y∗
A(wK1 )

satisfy a system of linear equations

MB(wK1 )B(wK1 )xB(wK1 ) = −qB(wK1 ),

yA(wK1 ) = MA(wK1 )B(wK1 )xB(wK1 ) + qA(wK1 ).
(4.4)

In what follows, we give a complexity bound for generating the optimal face.
Based on the modified algorithm and the above analysis, we only need to estimate
the numbers of iterations for Phases (I) and (II), respectively, where Phase (I) con-
sists of all preliminary iterations in order to meet the condition ‖%0,l‖∞/µ0 � β∗,
while Phase (II) consists of all iterations in which every index is smaller than K1.

We now show a complexity bound of Phase (I). Since the initial parameter µ0

does not need to be updated in Phase (I), we can not directly use the complexity
result by Burke and Xu [3]. However, their technique of proof will be used in the
proof of the following lemma.

LEMMA 4.4. Suppose Assumption (A) holds. Then the number of iterations for
phase (I) is about

O

(
β0

(
(1 + L)

L

)2

· log
‖%0,0‖∞
β∗µ0

)
. (4.5)

Proof. We begin with proving that for every index l,

θ0,l � 1

2
θ̄ , θ̄ := min{1, (1 − σ )/(2β0

(
1 + L

L

)2

)}. (4.6)

In fact, for index l, define w0,l(θ) = (x0,l(θ), y0,l (θ)) with

x0,l (θ) := x0,l + θ�x0,l , y0,l(θ) := y0,l + θ�y0,l , θ ∈ [0, 1].
Based on the Taylor expansion and the Newton equation (2.3), we have

%(w0,l(θ), µ0) = x0,l(θ)− vec{p(x0,l
i (θ)− y

0,l
i (θ), µ0)}

= (x0,l + θ�x0,l)− [
vec{p(x0,l

i − y
0,l
i , µ0)} + θ

·vec{p′
1(x

0,l
i − y

0,l
i , µ0)(�x0,l − �y0,l)i} + 1

2θ
2

·vec{p′′
11(x̄

0,l
i − ȳ

0,l
i , µ0)(�x0,l − �y0,l )2

i }
]

= %0,l + θ
[∇x%

0,l�x0,l + ∇y%
0,l�y0,l

]− 1
2θ

2vec

{p′′
11(x̄

0,l
i − ȳ

0,l
i , µ0)(�x0,l − �y0,l)2

i }
= (1 − θ)%0,l − 1

2θ
2 · vec{p′′

11(x̄
0,l
i − ȳ

0,l
i , µ0)

(�x0,l − �y0,l )2
i },

(4.7)
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where (x̄0,l
i − ȳ

0,l
i ) is between (x0,l

i − y
0,l
i ) and (x0,l

i (θ) − y
0,l
i (θ)) for all i. From

(iii) of Lemma 2.1 we obtain

‖vec{p′′
11(x̄

0,l
i − ȳ

0,l
i , µ0)(�x0,l

i − �y0,l
i )2

i }‖∞ � 1

µ0
‖�x0,l − �y0,l‖2

∞.

(4.8)

By the Newton equation (2.3) and Lemma 3.1 we have

‖�x0,l − �y0,l‖∞ � 2

(
1 + 1

L

)
‖%(w0,l, µ0)‖∞. (4.9)

So, it follows from (4.7)-(4.9) and ‖%0,l‖∞ � β0µ0 that

‖%(w0,l(θ), µ0)‖∞ � [1−θ+2β0

(
1+L

L

)2

θ2] · ‖%0,l‖∞ � (1−σθ)‖%0,l‖∞

whenever

θ � (1 − σ )/(2β0

(
1 + L

L

)2

).

The updating rule for θ0,l implies (4.6). From (2.4) and (4.6) we obtain that for any
index l,

‖%(w0,l+1, µ0)‖∞ � (1 − σθ0,l)‖%0,l‖∞ �
(

1 − σ (1 − σ )

4β0
(

1+L
L

)2

)
‖%0,l‖∞.

To ensure that

‖%(w0,l, µ0)‖∞ �
(

1 − σ (1 − σ )

4β0
(

1+L
L

)2

)l
‖%0,0‖∞ � β∗µ0,

it suffices if we have

l · log

(
1 − σ (1 − σ )

4β0
(

1+L
L

)2

)
� l ·

(
− σ (1 − σ )

4β0
(

1+L
L

)2

)
� log

β∗µ0

‖%0,0‖∞
.

Therefore, we know that (4.5) provides an upper bound for complexity of Phase
(I). �
Similarly, we can give a complexity bound of Phase (II) in which we obtain µK1

satisfying (4.2) from µ0.

LEMMA 4.5. Suppose that Assumptions (A) and (B) hold. Then the number K1 of
iterations for Phase (II) is bounded by

O

((
1 + L

L

)2

· log
µ0

σ
16

L
(1+‖M‖∞)2

σLCP

)
. (4.10)
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By adding (4.5) and (4.10) and noticing the facts that β0 � 1 and ‖%0,0‖∞ � β0µ0,
we obtain an upper bound for the total number of iterations:

O

(
β0

(
1 + L

L

)2

· log
β0µ0

σ
16

β∗L
(1+‖M‖∞)2

σLCP

)
,

which can be simplified as

O

(
ρ · log

β0µ0

τ

)
, (4.11)

where

ρ = β0

(
1 + L

L

)2

and τ = σ

16

β∗L
(1 + ‖M‖∞)2

σLCP .

From the definitions of L and β0, we know that ρ is a positive number which
depends on the problem and the starting point. From the definitions of L, β∗
and σLCP , we know that τ is a small positive number which depends only on the
problem.

THEOREM 4.1. (Complexity of Finding the Optimal Active Set) If Assumptions
(A) and (B) hold, then the modified noninterior continuation algorithm will gener-
ate the optimal active set by at most O (ρ · log β0µ0/τ) Newton iterations. More-
over, the unique solution w∗ of problem (1.1) can be obtained by solving the linear
system (4.4).

Compared with the existing identification results in the literature, Theorem 4.1
is better because it gives the required number of iterations to find the optimal
active set of problem (1.1). This identification property may allow us, like in the
literature of interior point methods, to reduce computational cost and hence to
improve the efficiency of noninterior continuation methods. Further research along
this direction would be useful.

From Lemma 3.2, we know that σLCP can be bounded below by an expression
of the input data if the problem data (M,q) are integer. Can a lower bound of
the value L be obtained by a cheap way? This problem is worth studying. The
complexity bound (4.11) depends on the assumption of strict complementarity, and
it would be desirable if this assumption can be removed in theoretical analysis.
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